FRANCISCO TRECEÑO LOSADA - ARTMADERA
  • VIDEOS
  • NEWSLETTER
  • LOCALIZACION & CONTACTO
  • FAQs
Tfno

+34 679 359 428

Eamil

info@artmadera.com

ArtMadera Tornero de Madera ArtMadera Tornero de Madera
Login / Registro
EntrarCrear una cuenta

¿Has perdido tu contraseña?

Buscar
0 Lista de deseos
0 items €0,00
Menú
ArtMadera Tornero de Madera ArtMadera Tornero de Madera
0 items €0,00
  • Home
  • Presentación
  • Información
    • El taller
    • La madera
    • El Torneado
  • Cono de Apolonio
  • Encargos
  • Videos
  • Blog
  • Tienda
Clic para ampliar
Inicio Geometría Secciones cónicas Secciones cónicas
Hipercubo €129,60
Volver a productos
Antipolillas natural €2,40

Secciones cónicas

Secciones cónicas. «Cono de Apolonio»

Comparar
Añadir a la lista de deseos
SKU: 600201 Categorías: Geometría, Secciones cónicas
Share:
  • Descripción
  • Valoraciones (0)
Descripción

Las secciones cónicas se obtienen geométricamente al hacer la intersección de un cono circular de dos hojas con un plano que no pasa por su vértice:

1.- Si el plano que corta al cono es paralelo a la base obtenemos una circunferencia;
2.- Si el plano que corta al cono es oblicuo y no corta a la base se trata de una elipse;
3.- Si el plano que corta al cono es paralelo a una generatriz y corta a la base se trata de una parábola;
4.- Si el plano que corta al cono (en este caso de doble hoja, es decir, dos conos opuestos por el vértice) corta a las dos bases, estamos ante una hipérbola.

Imaginando un cono con dos hojas, Apolonio demostró que variando la inclinación del plano que corta al cono se pueden obtener los tres tipos de cónicas junto con la circunferencia. De ahí, el denominado cono de Apolonio desmontable de madera torneada.

 

 

Valoraciones (0)

Valoraciones

No hay valoraciones aún.

Sé el primero en valorar “Secciones cónicas” Cancelar la respuesta

Debes acceder para publicar una valoración.

Productos relacionados

Comparar

Hipercubo

Geometría, Hipercubo
€129,60
Hipercubo de 75 mm. de lado de madera de olmo, roble, ciprés o castaño
Añadir a la lista de deseos
Añadir al carrito
Quick view
Comparar

Conos decorativos

Geometría, Conos decorativos
€30,00
Conos decorativos de Palo Rojo con Aliso y Abedúl.
Añadir a la lista de deseos
Añadir al carrito
Quick view
Comparar

Tangram de maderas variadas mediano

Geometría, Tangram
€79,20
El TANGRAM chino o juego de formas. Es un cuadrado dividido en siete figuras: un cuadrado, un paralelogramo y cinco triángulos (dos grandes, dos pequeños y uno mediano) con el que se pueden elaborar las más diversas figuras.
Añadir a la lista de deseos
Añadir al carrito
Quick view
Comparar

Tangram de madera de castaño grande

Geometría, Tangram
€72,00
Tangram de madera de castaño
Añadir a la lista de deseos
Añadir al carrito
Quick view
NOVEDADES

Registrate para novedades en Artmadera!

Francisco Treceño Losada - Arte en Madera.

C/ José Vidal, 22 - 47110 Casasola de Arión (Valladolid)
Tfno: (+34) 679 359 428
Email: info@artmadera.com
Artesania
  • Cono de Apolonio
  • Decorativos
  • Diseño
  • Geometría
  • Mesas de Trillo
  • Piezas Escultóricas
  • Reproducciones
  • Utilitarios
  • Vasijas y Jarrones
Legales
  • Política de privacidad
  • Aviso Legal
  • Política de Cookies
  • Personalizar Cookies
  • Contactar
Recent Posts
  • cono-de-apolonio
    La Universidad Estatal de California, incluye en su depósito el Cono de Apolonio
    22 de junio de 2017 No hay comentarios
  • seccion-conica
    CNRS Francia menciona nuestras secciones cónicas
    16 de junio de 2017 No hay comentarios
ARTMADERA 2020 CREADO POR O2web.es. SOLUCIONES PREMIUM E-COMMERCE.
Formas de Pago
  • Menú
  • Categorías
  • Cono de Apolonio
  • Decorativos
  • Diseño
  • Geometría
  • Mesas de Trillo
  • Piezas Escultóricas
  • Reproducciones
  • Utilitarios
  • Vasijas y Jarrones
  • Home
  • Presentación
  • Información
    • El taller
    • La madera
    • El Torneado
  • Cono de Apolonio
  • Encargos
  • Videos
  • Blog
  • Tienda
  • Lista de deseos
  • Login / Registro
Carrito Compra
Cerrar
Comienza a escribir para ver los productos que estás buscando.
Usamos cookies para mejorar su experiencia en nuestro sitio web. Al navegar por este sitio web, acepta nuestro uso de cookies.    Más información
Privacidad